Mazzola, Guerino. The Topos of Music I: Theory Geometric Logic, Classification, Harmony, Counterpoint, Motives, Rhythm. Springer, 2017. Xxx, 1337 pp.
Adorno is referenced as an important thinker for this book, but I imagine he would consider it an abomination. As interesting as I find category theory and topos theory and their possible applications, the issue here is not the intellectual exercise but the threat posed by the implementation of artificial intelligence, to which category theory is now contributing. This author purports to translate the ineffable into topoi, something I do not want to see done, if there is in fact a possibility of making this happen. Here are some interesting quotes from the book. (RD)
1 September 2024
….
It was Theodor Wiesengrund Adorno who recapitulated the question of
identity of a musical work with respect to performance. According to
Adorno [6] we have to recognize this fact: “Die Idee der
Interpretation gehört zur Musik selber und ist ihr nicht
adkzidenziell.” Performance is a substantial part of a
composition’s identity. This means that the work of art is not
fully existential before or without performance. [p. 186]
* * *
It seems that Adorno and Valéry have uniquely stressed the exterior performance activity in music and poetry, but their concern is much deeper. We should keep in mind that performance is strongly tied to its rhetoric function as a means to express understanding, and in this respect, performance is not only a perspective of action but instantiation of understanding, of interpretation of given structures. In other words, the Adorno and Valéry approach is classificatory on the level of functorial representation of works of art. [p. 187]
* * *
We
shall vaporize these mystifications [classification in musicology] in
the following chapters, the second yet seems already partly settled
from our previous discussion on the Yoneda philosophy: classification
in the sense of a determination of isomorphism classes is nothing
else than the overall task of understanding an object as we have
identified it in the functorial approach in the spirit of Adorno,
Valéry,
and Bätschmann in chapter 9. [p. 192]
* * *
Adorno
and Benjamin [110] have associated performative adequacy with an
activity of “infinitesimal precision”. We make plausible that
their language suggests the language of vector fields—though not
explicitly stated by these authors. Diana Raffman’s argument for
ineffability of musical nuances in performance [432] is discussed. We
relate this admittance of ineffability to the search for a powerful
language as an extension of the powerless common language. [p. 691]
* * *
As the wording is chosen, micrologic is a logic in the smallest dimensions of a composition and its performance. The text suggests that this procedure could be misunderstood as opposed to artistic fantasy. Adorno evokes Benjamin’s observation that fantasy is involved in the infinitely small (“im unendlich Kleinen”), more precisely in the interpolation towards the infinitely small. For Adorno, this is a revealing insight into the ultimate, true performance. Adorno asks for the discovery and inspection of the innermost interspaces (“sind die minimalen Hohlräume zu entdecken”). Infinite interpolation is the tool to do so. And this is not contrary to artistic fantasy, it is, so to speak, the strongest microscopic instrument we have, and should use. Artistic fantasy is not the pseudo-romantic blurredness, but a maximum of precision, of intensity and interplay of minimal movements and forces.
This absolutely central insight of Adorno and Benjamin is not only astonishing in the musicological environment (though not as a category of Adorno’s and Benjamin’s discourse), it is also a very problematic approach insofar as the humanities—where their text belongs—do not have any means of making such allusions precise. The text is a kind of schizophrenic claim of non-mathematical experts in the words of mathematical concept frameworks: Interpolation, infinitely small, etc.
To the mathematically trained, the allusion to calculus is straightforward. No doubt, the language of the infinitely small is calculus. Is it this kind of language which Adorno and Benjamin were aiming at? What is intriguing is that they are talking of infinite interpolation. Between what? The score is a radically discrete symbolism. The infinite interpolation is not a priori inscripted into the score structure. And, what are those cavities (“Hohlräume”) in terms of music parameters and processes? In between the discrete score events, there must be some infinitely divisible space which encompasses the cavities, Adorno and Benjamin are zooming in and penetrating. A solution of this conceptual approach could in fact be the continuous and differentiable interpolation suggested in the previous considerations of extensions of local compositions and maps. We claim that our theory is the mathematically adequate concept framework to the Adorno-Benjamin approach. [p. 692]
* * *
These
perspectives should make clear that we scarcely understand the
genuine concepts of performative coherence in their musical
phenomenology and accordingly cannot construct mathematical models on
the basis of such a blurred phenomenology. Adorno and Benjamin have
given us the catchwords for a deeper investigation of performance,
catchwords which we could very well transform into adequate
mathematical concepts. But these theorists did not elaborate their
conceptual germs to a degree of differentiation that could help
describing and understanding the concrete artistic shaping of
performance. We can hardly understand and even less forgive the
tremendous lack of musicological conceptualization and knowledge
about performance in view of the overly fluffy and too often
ridiculously blasé music criticism in the feuilletons of our
newspapers. [p. 772]
* * * * *
[6] Adorno Th W: Fragment über Musik und Sprache. Stuttgart, Jahresring 1956
[7] Adorno Th W: Dergetreue Korrepetitor (1963). Gesammelte Schriften, Bd. 15, Suhrkamp, Frankfurt am Main 1976 [p. 1223]
[Diagrams xxix-xxx]
1.1 Fundamental Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Fundamental Scientific Domains . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Layers of Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Molino’s Communication Stream . . . . . . . . . . . . . . . . . . . . . . .122.1.1 Physical Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Mental Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Psychological Reality . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2.1 Creator and Poietic Level . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Work and Neutral Level . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Listener and Esthesic Level . . . . . . . . . . . . . . . . . . . . 142.3 Semiosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The Cube of Local Topography . . . . . . . . . . . . . . . . . . . . . . . . 192.3.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 The Process of Signification . . . . . . . . . . . . . . . . . . . 17
2.3.4 A Short Overview of Music Semiotics . . . . . . . . . . . 17
2.5 Topographical Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Where is Music? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Depth and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Interior and Exterior Nature . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 What Is a Musicological Experiment? . . . . . . . . . . . . . . . . . . . 33
4.3 Questions—Experiments of the Mind . . . . . . . . . . . . . . . . . . . 34
4.4 New Scientific Paradigms and Collaboratories . . . . . . . . . . . . 35
5.1 Music in the EncycloSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Receptive Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Productive Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1 Universal Concept Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616.1.1 First Naive Approach To Denotators . . . . . . . . . . . . 50
6.1.2 Interpretations and Comments . . . . . . . . . . . . . . . . . 55
6.1.3 Ordering Denotators and ‘Concept Leafing’ . . . . . . . 58
6.2.1 Variable Addresses . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . .. . . 63
6.2.3 Discussion of the Form Typology . . . . . . . . . . . . 666.3 Denotators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.1 Formal Definition of a Denotator . . . . . . . . . . . . 67
6.4 Anchoring Forms in Modules . . . . . . . . . . . . . . . . . . . . . . 69
6.4.1 First Examples and Comments on Modules in Music . . . 70
6.5 Regular and Circular Forms . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Regular Denotators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.7 Circular Denotators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856.8 Ordering on Forms and Denotators . . . . . . . . . . . . . . . . . 89
6.8.1 Concretizations and Applications . . . . . . . . . . . . . 93
6.9 Concept Surgery and Denotator Semantics . . . . . . . . . . . 99
7.1 The Objects of Local Theory . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 First Local Music Objects . . . . . . . . . . . . . . . . . . . . . . . . . . .108
7.2.1 Chords and Scales . . . . . . . . . . . . . . . . . . . . . . . . . . .109
7.2.2 Local Meters and Local Rhythms . . . . . . . . . . . . . 114
7.2.3 Motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187.3 Functorial Local Compositions . . . . . . . . . . . . . . . . . . . . . . .121
7.4 First Elements of Local Theory . . . . . . . . . . . . . . . . . . . . . .1227.5 Alterations Are Tangents . . . . . . . . . . . . . . . . . . . . . . . . . . .127
7.5.1 The Theorem of Mason–Mazzola . . . . . . . . . . . . . .129
8.1 Symmetries in Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.1.1 Elementary Examples . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Morphisms of Local Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 Categories of Local Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.3.1 Commenting the Concatenation Principle . . . . . . . . . . . . .. 161
8.3.2 Embedding and Addressed Adjointness . . . . . . . . . . . . . . . 163
8.3.3 Universal Constructions on Local Compositions . . . . . . . . 166
8.3.4 The Address Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3.5 Categories of Commutative Local Compositions . . . . . . . . 171
9.1 Morphisms Are Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.2 Yoneda’s Fundamental Lemma . . . . . . . . . . . . . . . . . . . . . . . . .. 181
9.3 The Yoneda Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1849.4 Understanding Fine and Other Arts . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.4.1 Painting and Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.4.2 The Art of Object-Oriented Programming . . . . . . . . 188
10.1 Paradigmata in Musicology, Linguistics, and Mathematics . . . . 192
10.2 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.3 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.4 Fuzzy Concepts in the Humanities . . . . . . . . . . . . . . . . . . . . 200
11.1 Gestalt and Symmetry Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
11.2 The Framework for Local Classification . . . . . . . . . . . . . . . . . . . . . . . 20411.3 Orbits of Elementary Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.3.1 Classification Techniques . . . . . . . . . . . . . . . . . . . . . 205
11.3.2 The Local Classification Theorem . . . . . . . . . . . . . . 207
11.3.3 The Finite Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.3.4 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.3.5 Chords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.3.6 Empirical Harmonic Vocabularies . . . . . . . . . . . . . . 221
11.3.7 Self-addressed Chords . . . . . . . . . . . . . . . . . . . . . . . 225
11.3.8 Motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22811.4 Enumeration Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 231
11.4.1 Pólya and de Bruijn Theory . . . . . . . . . . . . . . . .. . . . 232
11.4.2 Big Science for Big Numbers . . . . . . . . . . . . . . .. . . . 23811.5 Group-theoretical Methods in Composition and Theory . . . . . 241
11.5.1 Aspects of Serialism . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.5.2 The American Tradition . . . . . . . . . . . . . . . . . . . . . . . 24711.6 Esthetic Implications of Classification . . . . . . . . . . . . . . . . . . 258
11.6.1 Jakobson’s Poetic Function . . . . . . . . . . . . . . . . . . . . . 259
11.6.2 Motivic Analysis: Schubert/Stolberg “Lied auf dem Wasser zu singen...” ......... 262
11.6.3 Composition: Mazzola/Baudelaire “La mort des artistes” . . . . 26811.7 Mathematical Reflections on Historicity in Music . . . . . . . . . . .. 271
11.7.1 Jean-Jacques Nattiez’ Paradigmatic Theme . . . . . . . . . 272
11.7.2 Groups as a Parameter of Historicity . . . . . . . . . . . . . . . 272
12.1 What Ehrenfels Neglected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
12.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
12.2.1 Metrical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
12.2.2 Specialization Morphisms of Local Compositions . . . . .. . 28112.3 The Problem of Sound Classification . . . . . . . . . . . . . . . . . . . . . . . 284
12.3.1 Topographic Determinants of Sound Descriptions . . . . . 284
12.3.2 Varieties of Sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.3.3 Semiotics of Sound Classification . . . . . . . . . . . . . . . . . . . . 29412.4 Making the Vague Precise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
13.1 The Local-Global Dichotomy in Music . . . . . . . . . . . . . . . . . . . . . . . . 300
13.1.1 Musical and Mathematical Manifolds . . . . . . . . . . . . . . . . . . 307
13.2 What Are Global Compositions? . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
13.2.1 The Nerve of an Objective Global Composition . . . . . . . . 310
13.3 Functorial Global Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
13.4 Interpretations and the Vocabulary of Global Concepts . . . . . . . . 316
13.4.1 Iterated Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
13.4.2 The Pitch Domain: Chains of Thirds, Ecclesiastical Modes, Triadic and Quaternary Degrees . . . . . . . . 318
13.4.3 Interpreting Time:
Global Meters and Rhythms .
. . . . . . . . . . 326
13.4.4 Motivic
Interpretations: Melodies and Themes .
. . . . . . . . . . . 331
14.1 Musical Motivation .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
333
14.2 Global Morphisms .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
334
14.3 Local Domains .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 341
14.4 Nerves .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 343
14.5 Simplicial Weights .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
345
14.6 Categories of
Commutative Global Compositions .
. . . . . . . . 347
15.1 Module Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
15.1.1 Global Affine Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
15.1.2 Bilinear and Exterior Forms . . . . . . . . . . . . . . . . . . . . . . . 353
15.1.3 Deviation: Compositions vs. “Molecules” . . . . . . . . . . . . . 355
15.2 The Resolution of a Global Composition . . . . . . . . . . . . . . . .. . . . 356
15.2.1 Global Standard Compositions . . . . . . . . . . . . . . . . . . . . . 356
15.2.2 Compositions from Module Complexes . . . . . . . . . . . . . 358
15.3 Orbits of Module Complexes Are Classifying . . . . . . . . . . . . . . . 363
15.3.1 Combinatorial Group Actions . . . . . . . . . . . . . . . . . . . . . 364
15.3.2 Classifying Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
16.1 Characterization of Interpretable Compositions . . . . . . . . . . . . 370
16.1.1 Automorphism Groups of Interpretable Compositions . . . . . 372
16.1.2 A Cohomological Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 374
16.2 Global Enumeration Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
16.2.1 Tesselation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
16.2.2 Mosaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
16.2.3 Classifying Rational Rhythms and Canons . . . . . . . . . . 380
16.3 Global American Set Theory . . . . . . 382
16.4 Interpretable
“Molecules” .
. . . . . . . . . . . . . . . . . . . . . . 385
17.1 Understanding by
Resolution: An Illustrative Example .
. . . . . 387
17.2 Varèse’s Program and
Yoneda’s Lemma .
. . . . . . . . . . . . . . . . . 392
18.1 What Is the Case: The Existence Problem . . . . . . . . . . . . . . . . . . 397
18.1.1 Merging Systematic and Historical Musicology . . . . . . . 398
18.2 Textual and Paratextual Semiosis . . . . . . . . . . . . . . . . . . . . . . . 400
18.2.1 Textual and Paratextual Signification . . . . . . . . . . .. . . 401
18.3 Textuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
18.3.1 The Category of Denotators . . . . . . . . . . . . . . . . . . . . . . . 402
18.3.2 Textual Semiosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
18.3.3 Atomic Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
18.3.4 Logical and Geometric Motivation . . . . . . . . . . . . . . . . . 419
18.4 Paratextuality . . . . . . . . . . . . . . . . . . . . . 424
19.1 The Grothendieck Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
19.1.1 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
19.1.2 Marginalia on Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
19.2 The Topos of Music: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 435
20.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
20.2 Folding Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
20.2.1 R2 ! R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
20.2.2 Rn ! R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
20.2.3 An Explicit Construction of μ with Special Values. . . . . 444
20.3 Folding Denotators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
20.3.1 Folding Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
20.3.2 Folding Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
20.3.3 Folding Powersets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
20.3.4 Folding Circular Denotators . . . . . . . . . . . . . . . . . . . . . . 448
20.4 Compound Parametrized
Objects . . .
. . . . . . . . . . . . . . . . . . . . . . . . 449
20.5 Examples .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 451
21.1 Review of Riemann and Jackendoff–Lerdahl Theories . . . . . . . . . . . . . . . . 455
21.1.1 Riemann’s Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
21.1.2 Jackendoff–Lerdahl: Intrinsic Versus Extrinsic Time Structures . . . . . . 457
21.2 Topologies of Global
Meters and Associated Weights .
. . . . . . . . . . . . . . . 459
21.3 Macro-Events in the
Time Domain .
. . . . . . . . . . . . . . . . . . . . . . . . . 461
22.1 Motivic Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
22.2 Shape Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
22.2.1 Examples of Shape Types . . . . . . . . . . . . . . . . . . . . 469
22.3 Metrical Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
22.3.1 Examples of Distance Functions . . . . . . . . . . . . . . . 472
22.4 Paradigmatic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
22.4.1 Examples of Paradigmatic Groups . . . . . . . . . . . . . . . . 475
22.5 Pseudo-metrics on Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
22.6 Topologies on Gestalts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
22.7 First Properties of the Epsilon Topologies . . . . . . . . . . . . . . . . . 48422.6.1 The Inheritance Property . . . . . . . . . . . . . . . . . . . . . . . 479
22.6.2 Cognitive Aspects of Inheritance . . . . . . . . . . . . . . . . . 481
22.6.3 Epsilon Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
22.7.1 Toroidal Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
22.8 Rudolph Reti’s Motivic Analysis Revisited . . . . . . . . . . . . . . . . . 490
22.8.1 Review of Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
22.8.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
22.9 Motivic Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
23.1 Hugo Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
23.2 Paul Hindemith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
23.3 Heinrich Schenker and Friedrich Salzer . . . . . . . . . . . . . . . . . . . . . . . . 503
24.1 Chord Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
24.1.1 Euler Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
24.1.2 12-tempered Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 512
24.1.3 Enharmonic Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
24.2 Chord Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
24.2.1 Extension and Intension . . . . . . . . . . . . . . . . . . . . . . . . . . 518
24.2.2 Extension and Intension Topologies . . . . . . . . . . . . . . . . 520
24.2.3 Faithful Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
24.2.4 The Saturation Sheaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
25.1 Harmonic Signs—Overview . . . . . . . . . . 530
25.2 Degree Theory . . . . . . . . . . . . . . . . . . . . . . . . 532
25.2.1 Chains of Thirds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
25.2.2 American Jazz Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
25.2.3 Hans Straub: General Degrees in General Scales . . . . . . 537
25.3 Function Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
25.3.1 Canonical Morphemes for European Harmony . . . . . . 540
25.3.2 Riemann Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
25.3.3 Chains of Thirds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
25.3.4 Tonal Functions from Absorbing Addresses . . . . . . . . 546
26.1 Making the Concept Precise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
26.2 Classical Cadences Relating to 12-tempered Intonation . . . . . . . 553
26.2.1 Cadences in Triadic Interpretations of Diatonic Scales . . . . 553
26.2.2 Cadences in More General Interpretations . . . . . . . . . . . . . 555
26.3 Cadences in
Self-addressed Tonalities of Morphology .
. . . . . . . . . 556
26.4 Self-addressed Cadences
by Symmetries and Morphisms .
. . . . . . 558
26.5 Cadences for Just Intonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
26.5.1 Tonalities in Third-Fifth Intonation . . . . . . . . . . . . . . . . . . 560
26.5.2 Tonalities in Pythagorean Intonation . . . . . . . . . . . . . . . . . 561
27.1 Modeling Modulation by Particle Interaction . . . . . . . . . . . . . . . . 564
27.1.1 Models and the Anthropic Principle . . . . . . . . . . . . . . . . . 565
27.1.2 Classical Motivation and Heuristics . . . . . . . . . . . . . . . . . 565
27.1.3 The General Background . . . . . . . . . . . . . . . . . . . . . . . . . 568
27.1.4 The Well-Tempered Case . . . . . . . . . . . . . . . . . . . . . . . . 571
27.1.5 Reconstructing the Diatonic Scale from Modulation . . . . . 574
27.1.6 The Case of Just Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
27.1.7 Quantized Modulations and Modulation Domains for Selected Scales . . . 581
27.2 Harmonic Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
27.2.1 The Riemann Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 586
27.2.2 Weights on the Riemann Algebra . . . . . . . . . . . . . . . . 587
27.2.3 Harmonic Tensions from Classical Harmony? . . . . . . . 590
27.2.4 Optimizing Harmonic Paths . . . . . . . . . . . . . . . . . . . . . . 591
28.1 First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
28.1.1 Johann Sebastian Bach: Choral from “Himmelfahrtsoratorium” . . . . . . 595
28.1.2 Wolfgang Amadeus Mozart: “Zauberfl¨ote”, Choir of Priests . . . . . . . . 598
28.1.3 Claude Debussy: “Pr´eludes”, Livre 1, No.4 . . . . . . . . . . . . . . . . . 600
28.2 Modulation in Beethoven’s Sonata op.106, 1st Movement . . . . . . . . 603
28.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
28.2.2 The Fundamental Theses of Erwin Ratz and Jrgen Uhde . . . . . 605
28.2.3 Overview of the Modulation Structure . . . . . . . . . . . . . . . . . . . . 607
28.2.4 Modulation B[ G via e−3 in W . . . . . . . . . . . . . . . . . . . . . . 608
28.2.5 Modulation G E[ via Ug in W . . . . . . . . . . . . . . . . . . . . . . . 608
28.2.6 Modulation E[ D/b from W to W_ . . . . . . . . . . . . . . . . . . . . 608
28.2.7 Modulation D/b B via Ud/d] = Ug]/a within W_ . . . . . . . . . 609
28.2.8 Modulation B B[ from W_ to W . . . . . . . . . . . . . . . . . . . . . 609
28.2.9 Modulation B[ G[ via Ub[ within W . . . . . . . . . . . . . . . . . . . 610
28.2.10Modulation G[ G via Ua[/a within W . . . . . . . . . . . . . . . . . . . 610
28.2.11Modulation G B[ via e3 within W . . . . . . . . . . . . . . . . . . . . . 610
28.3 Rhythmical Modulation in “Synthesis” . . . . . . . . . . . . . . . . . . . . 610
28.3.1 Rhythmic Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
28.3.2 Composition for Percussion Ensemble . . . . . . . . . . . . . . 613
29.1 Arrows and Alterations
. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 617
29.2 The Contrapuntal
Interval Concept .
. . . . . . . . . . . . . . . . . . . . . . . . . 619
29.3 The Algebra of Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
29.3.1 The Third Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
29.4 Musical Interpretation
of the Interval Ring .
. . . . . . . . . . . . . . . . . . . . 622
29.5 Self-addressed Arrows .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
29.6 Change of Orientation .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
30.1 Dichotomies and Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
30.2 The Consonance and Dissonance Dichotomy . . . . . . . . . . . . . . . 634
30.2.1 Fux and Riemann Consonances Are Isomorphic . . . . . 635
30.2.2 Induced Polarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
30.2.3 Empirical Evidence for the Polarity Function . . . . . . . . 637
30.2.4 Music and the Hippocampal Gate Function . . . . . . . . . 641
31.1 Deformations of the Strong Dichotomies . . . . . . . . . . . . . . . . . . . . . . . 645
31.2 Contrapuntal Symmetries Are Local . . . . . . . . . . . . . . . . . . . . . . . . . 647
31.3 The Counterpoint Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
31.3.1 Some Preliminary Calculations . . . . . . . . . . . . . . . . . . . . . . . . 649
31.3.2 Two Lemmata on Cardinalities of Intersections . . . . . . . . . . . . . . . 651
31.3.3 An Algorithm for Exhibiting the Contrapuntal Symmetries . . . . . . . . 651
31.3.4 Transfer of the Counterpoint Rules to General Representatives of Strong Dichotomies . . . . . . . . . . 655
31.4 The Classical Case: Consonances and Dissonances . . . . . . . . . . . . . . . . . 655
31.4.1 Discussion of the Counterpoint Theorem in the Light of Reduced Strict Style . . . . . . . . . . . . . . . 656
31.4.2 The Major Dichotomy—A Cultural Antipode? . . . . . . . . . . . . . . . 657
32.1 Performance as a
Reality Switch .
. . . . . . . . . . . . . . . . . . . . . . . . . . 665
32.2 Why Do We Need Infinite
Performance of the Same Piece? .
. . . 666
32.3 Local Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
32.3.1 The Coherence of Local Performance Transformations . . . . . 667
32.3.2 Differential Morphisms of Local Compositions . . . . . . . . . . . . 668
32.4 Global Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
32.4.1 Modeling Performance Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 674
32.4.2 The Formal Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
32.4.3 Performance qua Interpretation of Interpretation . . . . . 679
33.1 Classics: Tempo, Intonation, and Dynamics . . . . . . . . . . . . . . . 681
33.1.1 Tempo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
33.1.2 Intonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
33.1.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
33.2 Genesis of the General Formalism . . . . . . . . . . . . . . . . . . . . . 686
33.2.1 The Question of Articulation . . . . . . . . . . . . . . . . . . . . 687
33.2.2 The Formalism of Performance Fields . . . . . . . . . . . 689
33.3 What Performance Fields Signify . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
33.3.1 Th.W. Adorno, W. Benjamin, and D. Raffman . . . . . . . . . . . . . . . 691
33.3.2 Towards Composition of Performance . . . . . . . . . . . . . . . . . . . . 693
34.1 Taking off with a
Shifter . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
34.2 Anchoring Onset .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
697
34.3 The Concert Pitch .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
699
34.4 Dynamical Anchors .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
701
34.5 Initializing
Articulation .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
34.6 Hit Point Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
34.6.1 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
34.6.2 Flow Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
35.1 Performance Cells .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
711
35.2 The Category of
Performance Cells .
. . . . . . . . . . . . . . . . . . . . . . . . . 713
35.3 Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
35.3.1 Operations on Hierarchies . . . . . . . . . . . . . . . . . . . . . . 718
35.3.2 Classification Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
35.3.3 Example: The Piano and Violin Hierarchies . . . . . . . 722
35.4 Local Performance Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
35.5 Global Performance Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
35.5.1 Instrumental Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . 728
36.1 Feelings: Emotional
Semantics . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 734
36.2 Motion: Gestural
Semantics . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
36.3 Understanding: Rational
Semantics . .
. . . . . . . . . . . . . . . . . . . . . . . . 741
36.4 Cross-semantical
Relations . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
37.1 Rule-based Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
37.1.1 The KTH School . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
37.1.2 Neil P. McAgnus Todd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
37.1.3 The Zurich School . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
37.2 Remarks on Learning Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
38.1 Motivation from Practising and Rehearsing . . . . . . . . . . . . . . . . . . . . . 756
38.1.1 Does Reproducibility of Performances Help Understanding? . . . . . . . . 757
38.2 Tempo Curves Are Inadequate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
38.3 The Stemma Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
38.3.1 The General Setup of Matrilineal Sexual Propagation . . . . . . . . . . . 763
38.3.2 The Primary Mother—Taking Off . . . . . . . . . . . . . . . . . . . . . . 765
38.3.3 Mono- and Polygamy—Local and Global Actions . . . . . . . . . . . . . . 769
38.3.4 Family Life—Cross-Correlations . . . . . . . . . . . . . . . . . . . . . . . 771
39.1 Why Weights? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
39.1.1 Discrete and Continuous Weights . . . . . . . . . . . . . . . . . . . . . . . 775
39.1.2 Weight Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
39.2 Primavista Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
39.2.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
39.2.2 Agogics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
39.2.3 Tuning and Intonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
39.2.4 Articulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
39.2.5 Ornaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
39.3 Analytical Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
39.4 Taxonomy of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
39.4.1 Splitting Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
39.4.2 Symbolic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
39.4.3 Physical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
39.4.4 Field Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
39.5 Tempo Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
39.6 Scalar Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
39.7 The Theory of Basis-Pianola Operators . . . . . . . . . . . . . . . . . . . . . . . 795
39.7.1 Basis Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
39.7.2 Pianola Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
40.1 The Overall Modularity
. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 808
40.2 Frame and Modules .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
41.1 MetroRUBETTEr
. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
41.2 MeloRUBETTEr
. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
41.3 HarmoRUBETTEr
. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
41.4 PerformanceRUBETTEr
. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 824
41.5 PrimavistaRUBETTEr
. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
42.1 A Preliminary
Experiment: Robert Schumann’s “Kuriose Geschichte” .
. . . . . 833
42.2 Full Experiment: J.S.
Bach’s “Kunst der Fuge” .
. . . . . . . . . . . . . . . . . . 834
42.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
42.3.1 Metric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
42.3.2 Motif Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
42.3.3 Omission of Harmonic Analysis . . . . . . . . . . . . . . 841
42.4 Stemma Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
42.4.1 Performance Setup . . . . . . . . . . . . . . . . . . . . . . . . 842
42.4.2 Instrumental Setup . . . . . . . . . . . . . . . . . . . . . . . . 849
42.4.3 Global Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 850
43.1 Hierarchical Decomposition . . . . . . . . . . . . . . . . . . . . . . . 855
43.1.1 General Motivation . . . . . . . . . . . . . . . . . . . . . . . 855
43.1.2 Hierarchical Smoothing . . . . . . . . . . . . . . . . . . . 857
43.1.3 Hierarchical Decomposition . . . . . . . . . . . . . . . . 858
43.2 Comparing Analyses of Bach, Schumann, and Webern . . . . . 860
44.0.1 Analytical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
44.1 The Beran Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
44.1.1 The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
44.1.2 The Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
44.2 The Method of Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 880
44.2.1 The Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
44.2.2 Step Forward Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
44.3 The Results of Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 881
44.3.1 Relations between Tempo and Analysis . . . . . . . . . . . . . . . . . . . 882
44.3.2 Complex Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
44.3.3 Commonalities and Diversities . . . . . . . . . . . . . . . . . . . . . . . . 884
44.3.4 Overview of Statistical Results . . . . . . . . . . . . . . . . . . . . . . . . 897
45.1 Boiling down
Infinity—Is Feuilletonism Inevitable? .
. . . . . . . . . . . . . . . . 905
45.2 “Political
Correctness” in Performance—Reviewing Gould .
. . . . . . . . . . . . 906
45.3 Transversal
Ethnomusicology .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
46.1 The Stemma Model of
Critique . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 911
46.2 Fibers for Locally
Linear Grammars .
. . . . . . . . . . . . . . . . . . . . . . . . 912
46.3 Algorithmic Extraction
of Performance Fields .
. . . . . . . . . . . . . . . . . . . 916
46.3.1 The Infinitesimal View on Expression . . . . . . . . . . . . . . . . . . . . 916
46.3.2 Real-time Processing of Expressive Performance . . . . . . . . . . . . . . 917
46.3.3 Score–Performance Matching . . . . . . . . . . . . . . . . . . . . . . . . . 918
46.3.4 Performance Field Calculation . . . . . . . . . . . . . . . . . . . . . . . . 919
46.3.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
46.3.6 The EspressoRUBETTEr: An Interactive Tool for Expression Extraction 922
46.4 Local Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
46.4.1 Comparing Argerich and Horowitz . . . . . . . . . . . . . . . . . . . . . . 927
47.1 Performance of Logic
and Geometry .
. . . . . . . . . . . . . . . . . . . 934
47.2 Constructing Time from
Geometry . . .
. . . . . . . . . . . . . . . . . . 935
47.3
Discourse and Insight .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
48.1 Local Paradigmatic Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
48.1.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
48.1.2 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
48.2 Global Poetical Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
48.2.1 Roman Jakobson’s Horizontal Function . . . . . . . . . . . . . . . . . . . 942
48.2.2 Roland Posner’s Vertical Function . . . . . . . . . . . . . . . . . . . . . . 942
48.3 Structure and Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
49.1 The prestor
Functional
Scheme . . . .
. . . . . . . . . . . . . . . . . . . . . . 945
49.2 Modular Affine
Transformations .
. . . . . . . . . . . . . . . . . . . . . . . . 948
49.3 Ornaments and
Variations . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
49.4 Problems of Abstraction
. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 952
50.1 The Overall Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956
50.1.1 The Material: 26 Classes of Three-Element Motives . . . . . . 956
50.1.2 Principles of the Four Movements and Instrumentation . . . 956
50.2 1st
Movement:
Sonata Form .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
50.3 2nd
Movement:
Variations . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959
50.4 3rd
Movement:
Scherzo . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
50.5 4th
Movement:
Fractal Syntax .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
51.1 Object-Oriented Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
51.1.1 Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
51.1.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
51.1.3 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970
51.1.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970
51.1.5 Generic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
51.1.6 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
51.1.7 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
51.1.8 Boxes and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 972
51.1.9 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
51.2 Musical Object Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
51.2.1 Internal Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
51.2.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975
51.3 Maquettes: Objects in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
51.4 Meta-object Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982
51.4.1 Reification of Temporal Boxes . . . . . . . . . . . . . . . . . . . . . . . . . 984
51.5 A Musical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986
52.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994
52.2 Theory of the String Quartet Following Ludwig Finscher . . . . 994
52.2.1 Four Part Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995
52.2.2 The Topos of Conversation Among Four Humanists . . . 996
52.2.3 The Family of Violins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
53.1 Parameter Spaces for
Violins . . .
. . . . . . . . . . . . . . . . . . . . 1000
53.2 Estimation .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 1003
54.1 Counterpoint .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 1007
54.2 Harmony .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 1008
54.3 Effective Selection .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1009
A.1 Physical Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
A.1.1 Neutral Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014
A.1.2 Sound Analysis and Synthesis . . . . . . . . . . . . . . . . 1018
A.2 Mathematical and Symbolic Spaces . . . . . . . . . . . . . . . . . . 1028
A.2.1 Onset and Duration . . . . . . . . . . . . . . . . . . . . . . . . . 1028
A.2.2 Amplitude and Crescendo . . . . . . . . . . . . . . . . . . . 1029
A.2.3 Frequency and Glissando . . . . . . . . . . . . . . . . . . . . 1031
B.1 Physiology: From the Auricle to Heschl’s Gyri . . . . . . . . . . . 1036
B.1.1 Outer Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
B.1.2 Middle Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037
B.1.3 Inner Ear (Cochlea) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037
B.1.4 Cochlear Hydrodynamics: The Travelling Wave . . . . . . . . . . . . . 1041
B.1.5 Active Amplification of the Traveling Wave Motion . . . . . . . . . . 1042
B.1.6 Neural Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
B.2 Discriminating Tones: Werner Meyer-Eppler’s Valence Theory . . . . 1046
B.3 Aspects of Consonance and Dissonance . . . . . . . . . . . . . . 1049
B.3.1 Euler’s Gradus Function . . . . . . . . . . . . . . . . . . . . 1049
B.3.2 von Helmholtz’ Beat Model . . . . . . . . . . . . . . . . . . 1051
B.3.3 Psychometric Investigations by Plomp and Levelt . . . 1052
B.3.4 Counterpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052
B.3.5 Consonance and Dissonance: A Conceptual Field . . . . . 1053
C.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
C.1.1 Examples of Sets . . . . . . . . . . . . . . . . . . . . . . . 1058
C.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
C.2.1 Universal Constructions . . . . . . . . . . . . . . . . . 1062
C.2.2 Graphs and Quivers . . . . . . . . . . . . . . . . . . . . . 1062
C.2.3 Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063
C.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066
C.3.1 Homomorphisms of Groups . . . . . . . . . . . . . . . . . 1066
C.3.2 Direct, Semi-direct, and Wreath Products . . . . . 1068
C.3.3 Sylow Theorems on p-groups . . . . . . . . . . . . . . . 1069
C.3.4 Classification of Groups . . . . . . . . . . . . . . . . . . . . 1069
C.3.5 General Affine Groups . . . . . . . . . . . . . . . . . . . . . 1070
C.3.6 Permutation Groups . . . . . . . . . . . . . . . . . . . . . . 1071
D.1 Basic Definitions and Constructions . . . . . . . . . . . . . . . . 1075
D.1.1 Universal Constructions . . . . . . . . . . . . . . . . . . 1077
D.2 Prime Factorization .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
1080
D.3 Euclidean Algorithm .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
1080
D.4 Approximation of Real
Numbers by Fractions .
. . . . . 1080
D.5 Some Special Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
D.5.1 Integers, Rationals, and Real Numbers . . . . . 1081
E.1 Modules and Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 1083
E.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084
E.2 Module Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085
E.2.1 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085
E.2.2 Endomorphisms on Dual Numbers . . . . . . . . . . . . . . . 1087
E.2.3 Semi-Simple Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
E.2.4 Jacobson Radical and Socle . . . . . . . . . . . . . . . . .. . . . . 1088
E.2.5 Theorem of Krull–Remak–Schmidt . . . . . . . . . . . . . . 1090
E.3 Categories of Modules and Affine Transformations . . . . . . . 1090
E.3.1 Direct Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
E.3.2 Affine Forms and Tensors . . . . . . . . . . . . . . . . . . . . . . 1091
E.3.3 Biaffine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
E.3.4 Symmetries of the Affine Plane . . . . . . . . . . . . . . . . . . 1096
E.3.5 Symmetries on Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097
E.3.6 Symmetries on Zn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098
E.3.7 Complements on the Module of a Local Composition . . . . . 1099
E.3.8 Fiber Products and Fiber Sums in Mod . . . . . . . . . . . . 1099
E.4 Complements of Commutative Algebra . . . . . . . . . . . . . . . . . . 1101
E.4.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
E.4.2 Projective Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
E.4.3 Injective Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
E.4.4 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
F.1 Locally Ringed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
F.2 Spectra of Commutative Rings . . . . . . . . . . . . . . . . . . . . . . . . . 1108
F.2.1 Sober Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
F.3 Schemes and Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111
F.4 Algebraic and Geometric Structures on Schemes . . . . . . . . . . 1112
F.4.1 The Zariski Tangent Space . . . . . . . . . . . . . . . . . . . . . . 1112
F.5 Grassmannians .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
F.6 Quotients .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 1114
G.1 Categories Instead of Sets . . . . . . . . . . . . . . . . . . . . . . . 1115
G.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
G.1.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
G.1.3 Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
G.2 The Yoneda Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120
G.2.1 Universal Constructions: Adjoints, Limits, and Colimits . . . . . . . . . . 1120
G.2.2 Limit and Colimit Characterizations . . . . . . . . . . . . . . . . . . . . . 1122
G.3 Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
G.3.1 Subobject Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
G.3.2 Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
G.3.3 Definition of Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
G.4 Grothendieck Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
G.4.1 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130
G.5 Formal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
G.5.1 Propositional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
G.5.2 Predicate Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
G.5.3 A Formal Setup for Consistent Domains of Forms . . . . . . . . . . . . . . 1137
H.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
H.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
H.1.2 The Category of Topological Spaces . . . . . . . . . . 1146
H.1.3 Uniform Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
H.1.4 Special Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
H.2 Algebraic Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
H.2.1 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
H.2.2 Geometric Realization of a Simplicial Complex . . . . . 1148
H.2.3 Contiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
H.3 Simplicial Coefficient Systems . . . . . . . . . . . . . . . . . . . . 1150
H.3.1 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
I.1 Abstract on Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
I.1.1 Norms and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
I.2 Ordinary Differential Equations (ODEs) . . . . . . . . . . . . . . . . . . . . . . . 1156
I.2.1 The Fundamental Theorem: Local Case . . . . . . . . . . . . . . . . . . . 1156
I.3 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161
L.1 Chord Classes .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 1169
L.2 Third Chain Classes .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1175
M.1 Two Tone Motifs in
OnPiMod12,12
. . . .
. . . . . . . . . . . . . . . . . . . . . 1183
M.2 Two Tone Motifs in
OnPiMod5,12
. . . .
. . . . . . . . . . . . . . . . . . . . . . 1184
M.3 Three Tone Motifs in
OnPiMod12,12
. . . .
. . . . . . . . . . . . . . . . . . . 1185
M.4 Four Tone Motifs in
OnPiMod12,12
. . . .
. . . . . . . . . . . . . . . . . . . . . 1188
M.5 Three Tone Motifs in
OnPiMod5,12
. . . .
. . . . . . . . . . . . . . . . . . . . . 1195
N.1 12-Tempered Modulation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
N.1.1 Scale Orbits and Number of Quantized Modulations . . . . . . . . . . . . 1197
N.1.2 Quanta and Pivots for the Modulations Between Diatonic Major Scales
(No.38.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
N.1.3 Quanta and Pivots for the Modulations Between Melodic Minor Scales
(No.47.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
N.1.4 Quanta and Pivots for the Modulations Between Harmonic Minor Scales
(No.54.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202
N.1.5 Examples of 12-Tempered Modulations for all Fourth Relations . . . . . . 1203
N.2 2-3-5-Just Modulation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203
N.2.1 Modulation Steps between Just Major Scales . . . . . . . . . . . . . . . . 1203
N.2.2 Modulation Steps between Natural Minor Scales . . . . . . . . . . . . . . 1204
N.2.3 Modulation Steps From Natural Minor to Major Scales . . . . . . . . . . 1205
N.2.4 Modulation Steps From Major to Natural Minor Scales . . . . . . . . . . 1206
N.2.5 Modulation Steps Between Harmonic Minor Scales . . . . . . . . . . . . . 1206
N.2.6 Modulation Steps Between Melodic Minor Scales . . . . . . . . . . . . . . 1207
N.2.7 General Modulation Behaviour for 32 Alterated Scales . . . . . . . . . . . 1208
O.1 Contrapuntal Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211
O.1.1 Class Nr. 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211
O.1.2 Class Nr. 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212
O.1.3 Class Nr. 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
O.1.4 Class Nr. 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1214
O.1.5 Class Nr. 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
O.1.6 Class Nr. 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
O.2 Permitted Successors for the Major Scale . . . . . . . . . . . . . . . . 1218
Category Theory — History & Philosophy: An Introductory Bibliography
Cybernetics & Artificial Intelligence: Ideology Critique
Theodor W. Adorno & Critical Theory Study Guide
Home Page
| Site
Map | What's New
| Coming
Attractions | Book News
Bibliography
| Mini-Bibliographies
| Study
Guides | Special Sections
My Writings | Other Authors' Texts
| Philosophical
Quotations
Blogs
| Images
& Sounds | External Links
CONTACT Ralph Dumain
Uploaded 20 January 2025
Site ©1999-2025 Ralph Dumain